Perez-Huerta, A. and Cusack, M. and Zhu, W. (2008) Assessment of crystallographic influence on material properties of calcite brachiopods
نویسندگان
چکیده
Calcium carbonate biominerals are frequently analysed in materials science due to their abundance, diversity and unique material properties. Aragonite nacre is intensively studied, but less information is available about the material properties of biogenic calcite, despite its occurrence in a wide range of structures in different organisms. In particular, there is insufficient knowledge about how preferential crystallographic orientations influence these material properties. Here, we study the influence of crystallography on material properties in calcite semi-nacre and fibres of brachiopod shells using nanoindentation and electron backscatter diffraction (EBSD). The nano-indentation results show that calcite semi-nacre is a harder and stiffer (H & 3 5 GPa; E = 50 85 GPa) biomineral structure than calcite fibres (H = 0.4 3 GPa; E = 30 60 GPa). The integration of EBSD to these studies has revealed a relationship between the crystallography and material properties at high spatial resolution for calcite semi-nacre. The presence of crystals with the c-axis perpendicular to the plane-of-view in longitudinal section increases hardness and stiffness. The present study determines how nano-indentation and EBSD can be combined to provide a detailed understanding of biomineral structures and their analysis for application in materials science.
منابع مشابه
Material properties of brachiopod shell ultrastructure by nanoindentation.
Mineral-producing organisms exert exquisite control on all aspects of biomineral production. Among shell-bearing organisms, a wide range of mineral fabrics are developed reflecting diverse modes of life that require different material properties. Our knowledge of how biomineral structures relate to material properties is still limited because it requires the determination of these properties on...
متن کاملInfluence of crystallographic orientation of biogenic calcite on in situ Mg XANES analyses.
Micro X-ray absorption near-edge spectroscopy at the Mg K-edge is a useful technique for acquiring information about the environment of Mg(2+) in biogenic calcite. These analyses can be applied to shell powders or intact shell structures. The advantage of the latter is that the XANES analyses can be applied to specific areas, at high (e.g. micrometre) spatial resolution, to determine the enviro...
متن کاملOptimizing electron backscatter diffraction of carbonate biominerals-resin type and carbon coating.
Electron backscatter diffraction (EBSD) is becoming a widely used technique to determine crystallographic orientation in biogenic carbonates. Despite this use, there is little information available on preparation for the analysis of biogenic carbonates. EBSD data are compared for biogenic aragonite and calcite in the common blue mussel, Mytilus edulis, using different types of resin and thickne...
متن کاملGrinding-aid effect on the colour properties (Ry, whiteness and yellowness) of calcite in stirred media milling
This study investigates the influence of some chemical additives such as methanol, ethanol, sodium oleat, chloroform and sodium hexametaphosphate (SHMP) on the dry fine grinding of calcite (X50= 33 µm) using a stirred media mill. The experiments were carried out by a batch operation, and the change in colour properties (Ry, whiteness and yellowness) of calcite powder. The results showed that th...
متن کاملCRYSTALLOGRAPHIC, MORPHOLOGICAL AND W-H MODELS INVESTIGATIONS ON Mn SUBSTITUTED ZnO NANOCRYSTALS
Mn doped ZnO nanocrystals were prepared by co-precipitation route sintered at 450 °C temperature. XRD results indicate that the samples having hexagonal (wurtzite) structure. From X-ray data it is found that the lattice parameters increase with increasing Mn concentration. The X-ray density decreases with increasing Mn concentration of Zn 1-x Mnx O nanocrystals. It indicates that the Mn...
متن کامل